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The aim of this study was to obtain a better understanding of the process of the initial
decay of energy in relation to the estimates of damping loss factor; to investigate the spatial
variation of the initial decay rate in order to obtain more reliable estimates of damping
loss factor from the decay rate method; and to compare the spatial averages and spatial
variation of damping loss factor between the decay rate method and the power input
method. The initial decay rate of energy was experimentally investigated on uniform plates.
The energy mean free path time was introduced as a factor to characterize the lower limit
of a decay interval for fitting an initial decay slope, and to determine the initial point of
a decay curve. It is concluded that the initial decay slopes can sometimes be determined
within a very short decay interval (e.g., less than 10 dB) provided that the corresponding
time interval is larger or much larger than the energy mean free path time. Additionally,
the effect of the direct field on the initial decay can be ignored provided that the response
point is far enough from the drive point. An analysis of the spatial variation of initial
decay rate showed that an increase in the number of modes per band, and light and
moderate damping can reduce the spatial variation. High damping may increase the spatial
variation. For a frequency band with more modes, fewer response points need to be used to
obtain a stable estimation of spatial variance. It was confirmed that the damping loss factor
determined from the decay rate method was in general in good agreement with the power
input method. The comparison of the spatial variances of damping loss factor between
the two methods showed that the decay rate method gives a more reliable estimate of the
damping loss factor of the plates. It is concluded that the decay rate method is to be
preferred to the power input method when determining the damping loss factor of a system.
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1. INTRODUCTION

Knowledge of the damping characteristics of structure components is essential in all
types of dynamic analyses including the statistical energy analysis (SEA). Since
damping does not refer to a unique physical phenomenon, it is difficult to predict damping
in general [1–3]. Experimental methods constitute therefore in many cases the only
appropriate approach. The most common methods for determining the damping loss
factor experimentally can be divided into three groups [2–4]: (i) the decay rate method,
(ii) the power input method, and, (iii) the experimental modal analysis method.

Of the three methods, the power input method has the advantage of being closely
connected with the definition of structural losses [3]. Practical use of the power input
method is, however, limited to uniform structures or the structures where the mass density
distribution is known. In addition, this method may be subject to error associated with
spectral estimation of input power.
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There is no general way of computing frequency-band values from the modal loss
factors, except in the cases of equal modal damping, equal modal energy and equal power
flow into each mode [3, 5, 6]. Therefore, in general with regard to frequency band average
loss factors, the power input method is not comparable with the techniques of experimental
modal analysis.

The consistency between the power input method and the decay rate method, in
structural acoustics, has been argued for some time in the literature, particularly with
regard to the selection of decay slope [5–9]. Since energy decay curves often appear as
dual-slope or multiple-slope curves, it is essential to know which part of the decay curves
should be used to estimate damping loss factors that are consistent with the results from
the power injection method. It was concluded by Jacobsen [3] that, in principle, with the
condition that the driving points are the same, the power input method is equivalent
to the decay rate method provided the initial part of the vibration energy decay curve
is used. He experimentally verified this consistency relationship with various structure
configurations.

Theoretically, the initial decay rate should be determined by fitting a straight line to
a decay interval which is as short as possible [3]. However, an arbitrarily short interval
may not be appropriate since the change of vibration energy in a system from one state
to another takes place during a finite time. Another difficulty met when determining the
initial decay slope in structures is the determination of the starting point of a decay curve
since the initial decay stage is influenced by both the direct and the reverberant fields.

From one perspective regarding the consistency relationship between the decay rate and
the power input methods, the initial decay rate is also related to the location of the
excitation points and the measurement points. This means that the initial decay rate has
a spatial variation. To obtain a reliable estimate of a spatial average of initial decay rate,
it is necessary to investigate its spatial variation. It has been pointed out that the decay
rate method can give a fair estimation of loss factor without any spatial averaging
compared to the power input method [3]. It is still unclear, however, whether the decay
rate method yields less spatial variance in the estimate of damping loss factor than the
power input method does when a certain number of driving points and measurement points
are used. If this is the case, then the initial decay rate can be used as a benchmark to adjust
the estimation of the energy term in the power input method and the decay rate method
will be preferred to the power input method when determining the damping loss factor
of a system.

The purposes of the study are, therefore, as follows: (i) to define the lower limit of
the time interval for the initial decay slope and to specify the starting point of an energy
decay curve; (ii) to verify the consistency relationship of damping loss factor between
the decay rate method and power input method; (iii) to investigate the spatial variance of
initial decay rate; (iv) to compare the variance of damping loss factor from the decay rate
method and the power input method. The study is based on experimental investigations
of uniform and rectangular plates.

2. THEORETICAL BACKGROUND OF CONSISTENCY RELATIONSHIP BETWEEN THE
DECAY RATE METHOD AND THE POWER INPUT METHOD

For a system, the consistency between the decay and the power input method [3] can
be expressed as

h= g/27·3f=P/vE, (2.1)
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where h is the frequency band averaged damping loss factor, P is the steady state value
of input power, E is the steady state value of energy, v=2pf is the center frequency of
the band and g is the initial decay rate (dB/s) of the system at time t=0 when the input
power is suddenly cut off and is given as

g=d[10 log E(t)]/dt =t=0, (2.2)

where E(t) is the time dependent energy averaged over a short time [10]. This short time
may be related to the energy mean free path time that will be discussed afterwards.

The middle and right terms in equation (2.1) denote the decay rate method and the
power input method respectively. Equations (2.1) and (2.2) show that, for the frequency
band average damping loss factor, the decay rate method is equivalent to the power
input method provided the initial decay rate is used. Furthermore, the time t=0 in
equation (2.2) implies that the initial decay rate is to be determined in a state when the
steady state energy level exhibits little change, and light and moderate damping conditions
are assumed [3].

In the steady state, the frequency band average damping loss factor determined from
the power input method in equation (2.1) can be expressed by the modal damping and
modal energy as [3, 5, 7]

h= s
N

i=1

hi Ei /E for i=1, 2, 3, . . . , N, (2.3)

where Ei and hi are the modal energy and modal loss factor of the ith mode in the
frequency band. This implies that the frequency band average of damping loss factor
determined from the power input method depends on the distribution of driving points
and measurement points. In terms of the consistency relationship between the power input
method and the decay rate method, this distribution also affects the frequency band
average of damping loss factors determined from the decay rate method.

3. EXPERIMENTS

3.1.  

In the study, measurement and analysis was carried out with an LMS (Leuven
Measurement & Systems) CADA-x, FFT-based measurement system with eight channels.
With this system, vibration energy decay was measured, for random noise burst excitation,
by digital filtering and averaging. It has been pointed out [11] that the method provides
a fast and reliable way of collecting data with multiple averaging. The excitation time was
varied from 30% to 60% of the total length in one time record. The excitation time used
ensured that the structures were sufficiently excited at the same time as the whole decay
period could be observed. With reference to the study [11], thirty averages were used to
obtain the ensemble average in the decay measurements. It was assumed that this averaging
number was sufficiently large to ensure the absence of noise in the decay measurements.
This method requires, however, a repetition of the decay measurement for every third
octave band being studied. In addition, the FFT processing in the LMS system requires
that the measured frequency bandwidth be to the power of 2. Thus, the frequency
bandwidths were only approximations of the corresponding third octave bands. The
difference between the two types of bandwidths increases with frequency. For instance, at
500 Hz, the third octave bandwidth is 115 Hz and the actual bandwidth is 128 Hz; at
2500 Hz, the third octave bandwidth is 580 Hz and the actual bandwidth is 1024 Hz. Thus,
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to ensure that the structure be excited only in the bands of interest, the excitation signal
was filtered by a 1/3 octave band-pass filter set.

In addition, several other techniques for the determination of decay can be found in the
literature, e.g., (i) a technique based on running time average estimates [12–14]; (ii) a
technique based on the Schroeder integrated impulse response [15–17]; and (iii) a technique
based on amplitude tracking in the frequency domain [11]. These techniques have the
advantages of reducing both the noise and the irregularity in decay measurements. An
example of a comparison of the energy decay envelopes determined from the burst random
noise and the Schroeder integrated impulse methods is given in Figure 1. It is shown that
the initial decay slopes derived from the two methods are very close. It is noted that the
Schroeder integrated impulse method yields a much more smooth decay curve than the
random noise burst method. However, a drawback of the Schroeder integrated impulse
method is that the decay envelope including the time period before the cut-off of input
power cannot be fully observed. The later part of the decay curve may be biased due to
the influence of the insufficient spectral resolution [17], which can be seen in the figure.
Thus, to study the whole process of energy decay, the random noise burst method is
considered to be appropriate.

3.2.  -

The energy decay curve and time averaged squared acceleration were measured with
PCB type 353 accelerometers (2 grams each). The input power was determined by
measurement of the cross-power spectrum between the force and acceleration signals
captured by a (Brüel and Kjaer) type 8001 impedance head. Since phase errors between

Figure 1. Comparison of decay envelopes at the third octave band of 1000 Hz, between the random noise burst
method and the Schroeder integrated impulse method. The decay curve from the Schroeder integrated impulse
method is shifted down by 30 dB. The measurement was carried out at a point in an undamped aluminium plate
(952×604×5 mm).
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the force and the acceleration signals may affect the input power [3], this problem is
particularly evaluated by applying the impedance head to a free mass (about 20 grams)
mounted on the impedance head and measuring the phase difference. As shown in
Figure 2, the phase differences between the force and velocity signals are within 20·2
degrees in the frequency range of interest. This phase mismatch is considered very small.
The random errors in the estimate of input power and squared acceleration due to a finite
averaging time can be reduced by increasing the ensemble averaging number. In the study,
the ensemble averaging number was set to 100, which will lead to a normalized random
variance below 0·01 [14].

The structures were excited by a shaker with a driving rod. The measurements were
carried out on the structures described in Table 1, which includes the several conditions
of undamped (h1 0·001), light damped (0·001Q hQ 0·01), highly damped (hq 0·01)
plates as well as single and coupled plates. The number of randomly selected measurement
and driving points on the structures are also defined in Table 1. For each of the structures
tested, the measurement points and driving points were located at the same position in
both the decay rate and power input methods.

4. SELECTION OF INITIAL DECAY SLOPE

Some typical patterns of energy decay curves in a log scale are given in Figure 3(a–d).
Figure 3(a) shows an energy decay curve decaying linearly with time, which was measured
in a frequency band that includes only one mode. Figure 3(b) gives in addition an
approximate linear energy decay curve measured in a frequency band that includes several
modes. In both cases, the decay rates are identical within a large decay interval. However,
the energy decay curve may exhibit a dual-slope or a multiple-slope for a frequency band
that includes more than one mode as shown in Figure 3(c). The initial decay rate
determined by fitting a straight line to the first part of the decay curve will be very different
to the decay rate of the rest. Modes with different decay rates and energy levels in a
band may be dominant in different parts of the decay history. It is, however, not necessary
that the modes in a band possess different modal damping in order to appear

Figure 2. Phase mismatch measured between the force and velocity signals in the impedance head when a
free mass (20 g) is mounted on the impedance head.
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Figure 3. A typical decay envelope in a third octave band in the damped plate 1. DTd : a time delay of the
initial point of energy decay when the input power has been suddenly cut off. Third octave band centre frequencies
(Hz): (a) 250; highly damped plate (b) 630; lightly damped plate (c) 800; highly damped plate (d) 1600; highly
damped plate.
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as a dual-slope or a multiple-slope. Even for modes with similar modal damping in a band,
they may decay at different rates if their resonance frequencies are at the far ends of
a frequency band. The reason for this is that the initial decay rate is directly proportional
to the frequency as shown in equation (2.1). Of course, dissimilar modal damping at modes
in a band may enhance this phenomenon. Figure 3(d) shows a decay envelope measured
in a highly damped frequency band. The energy level decays dramatically within a very
short time.

To fulfil the condition in equation (2.2), the initial decay rate should be determined by
fitting a straight line to the energy decay curve within an interval which is as short as
possible. However, it can be seen from the figures above that the initial decay slopes for
different decay curves may be determined within very different decay intervals. In addition,
a time delay is observed between the moment when the input power is cut off and the
moment when the energy starts to decay in these figures. To clarify these two points, the
process of energy decay in a structure needs to be considered.

4.1. -         

The decay pattern of the vibration field in a structure may be readily described in terms
of the concept of energy rays [18, 19]. When the vibrational energy is a structure reaches
steady state, the energy density at any observation point is comprised of two contributions.
One is that from the direct field, i.e., the direct energy flow from the excitation source,
and the other is that from the reverberant field, i.e., the energy flows reflected from the
boundaries. When the excitation source is suddenly switched off, the steady state energy
density starts to decay. The first drop of energy density at the observation point is due
to the disappearance of the direct energy flow. This is not detected immediately, however,
since it takes some time for the ‘‘end’’ of the emitted energy flow to travel from the source
to the observation point. The reflected energy flows then disappear one by one as the ‘‘end’’
of each energy flow passes the point of observation. It can be seen that the decay of energy
density in a structure appears as a series of steps in time. The lengths of the steps will
seldom be identical due to the various paths of reflected energy flows, the edge scattering
and diffraction of bending waves (only this type of wave is considered in the study). To
make the analysis easier, however, a concept of average length of steps is introduced, which
is called here the energy mean free path time.

4.2.     

The concept of mean free path expresses statistically the average distance of the
vibrational wave propagation between reflections [2, 18, 19]. For plates, the mean free path
can be calculated by [2]

d= pA/L, (4.1)

where A is the surface area of the plate and L is the perimeter of the plate. The energy
mean free path time is given as

t= d/Cg , (4.2)

where Cg is the group velocity at which the energy propagates. The energy mean free
path time is the mean step length for the change of energy density from one state to another
from a statistical point of view. Thus the selection of initial decay slope is constrained by
this lower limitation. In other words, in order to see at least two drops of energy flow,
the time interval over which a straight line is to be fitted should be at least twice the energy
mean free path time. Furthermore, even more energy drops may be required to reduce the
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Figure 4. Comparison between energy mean free path time in the plate 1, time intervals for the first 10 dB
decay range in the undamped, lightly damped and highly damped plate 1, and space averaged time delay of the
initial points of energy decay in the highly damped plate 1. —W—, Energy mean free path time; —w—, time
interval for 10 dB decay, undamped; —r—, time interval for 10 dB decay, lightly damped; —q—, time interval
for 10 dB decay, highly damped; —×—, time delay of initial decay point, highly damped.

uncertainty of the fitted line due to the various paths of energy flows as mentioned
previously.

The energy mean free path time for plate 1 is plotted in Figure 4, together with the time
interval for a selected 10 dB decay range for the case of undamped, lightly damped and
highly damped plates. The corresponding time interval is calculated by

DT10 =10/27·3fh, (4.3)

where h is the damping loss factor that is determined by the power input method. It can
be seen that for the undamped and lightly damped plates the time intervals for the 10 dB
decay range are much larger than the energy mean free path times in all the frequency
bands of interest. This indicates that there will be many drops of energy flow in these time
intervals which implies that the initial decay slope may be determined in an even shorter
time interval or decay interval which is less than 10 dB. Figure 5 shows an example where

Figure 5. A typical decay envelope in the third octave band of 500 Hz in the highly damped plate 1. ‘a’ and
‘b’ are two possible choices of the initial point of the energy decay.
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the initial decay slope can be determined within the first 10 dB decay range. For the highly
damped case, the time interval over the 10 dB decay range approaches the energy mean
free path time with the increase of frequency. They are of the same order of amplitude
in the higher frequency range, which implies that the 10 dB decay range may not be wide
enough to include at least two energy drops as shown in Figure 3(d). In this case, the decay
interval should be extended to at least 20 dB.

It should be noticed that obtaining a true energy decay curve is obscured by the
following factors: (i) only the kinetic energy can be measured; (ii) the time resolution in
the decay history is limited due to the zoom measurement for the third octave band in
the study; the details in the process of energy drop, therefore, cannot be observed precisely.
This problem decreases when the bandwidth of the third octave band becomes larger;
(iii) the beating phenomenon will modulate the decay envelope when frequencies of two
modes are close and damping is very light.

4.3.     

The choice of the starting moment of an energy decay may lead to very different
decay slopes. For instance, in Figure 5 use of the initial points ‘a’ and ‘b’ will give very
different decay slopes. From Figures 3(a–d) and 5, it can be seen that the starting
moment of energy decay does not occur when the input power is cut off abruptly. A time
delay, DTd , occurs here between the two time instants. Since the average distance between
two arbitrarily selected observation and excitation points in a plate should be compatible
with the mean free path [2], this implies that the time delay for the drop of the direct
energy flow, after the excitation source is suddenly cut off, should be compatible with the
energy mean free path time. When the time delay between the moment of power cut-off
and the initial point of decay is larger than the energy mean free path time, the decay of
energy results from the disappearance of reflected energy flows. Consequently, the energy
decay curve includes only the drops of the reflected energy from the reverberant field.
In Figures 3(a–d), the observed time delay values for each decay curve are shown.

In a finite plate, the total mean square velocity of vibration is the sum of the direct field
and the reverberant field [2]. It was suggested [3] that the direct vibration field should be
included in the determination of loss factor of a structure since even for an infinite structure
(for which the entire vibration field is ‘‘direct’’), the ratio P/vE in the power input method
is still equal to the loss factor. According to these statements, it would follow that a
consistency of damping loss factors between the decay rate and the power input methods
may be achieved if the initial decay slope includes the first drop of the direct energy flow
when the direct field is dominant.

The space averages of observed time delays for the highly damped plate 1 are given in
Figure 4. It is shown that the time delays are larger or considerably larger than the energy
mean free path times for all the frequency ranges being studied. This indicates that even
for the highly damped plate the initial decay point is still governed by the revererant field
instead of the direct field. This conclusion is supported by the boundary theory [2] as shown
in Figure 6, where the ‘‘boundary’’ between the direct and reverberant field is defined as
the distance d from the point of excitation and calculated by

d= fhM/rCg , (4.4)

when h is the damping loss factor that is determined by the power input method, M is
the mass, and r is the mass per unit area. The range of the direct field around the excitation
points is less than 1 cm for the undamped and lightly damped plates 1 and lightly damped
plate 2. For the highly damped plate 1 this range is less than 10 cm in most of the frequency
bands. In the structures studied, all the randomly selected measurement points were placed
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Figure 6. Direct field from the points of excitation in the undamped, lightly damped and highly damped plate
1 and the lightly damped plate 2, which is calculated from equation (4.4). —r—, Undamped plate 1; —t—,
lightly damped plate 1; —w—, highly damped plate 1; —×—, lightly damped plate 2.

at a distance of more than 10 cm from the points of excitation. Thus, the effect of the direct
field can be ignored in the study. This indicates that the starting moment of energy decay
curves can be considered to occur in the reverberant field. In Figure 5, the point ‘a’ has
a time delay, DTd , equal to 70 ms, which is much larger than the corresponding energy
mean free path time (1·26 ms). It can be concluded, therefore, that the point ‘a’ is already
in the reverberation field and should be selected as the initial decay point.

5. COMPARISON OF DAMPING LOSS FACTORS BETWEEN THE DECAY RATE AND
THE POWER INPUT METHODS

In the study, the mean value of the damping loss factor determined from the power
input method for a plate is included by summing up input power and energy separately
as given by

h=P�/vE�, (5.1)

where P� =(1/m) sm
j=1 Pj , Pj is the time averaged input power in the drive point j

( j=1, . . . , m) in the plate, E� =M sm
j=1 sn

i=1 v2
ij /nm, where v2

ij is time averaged square
velocity in the measurement point i (i=1, . . . , n) when the plate is excited in the drive
point j and M is the mass of the plate. To calculate the loss factor of a system including
two coupled plates, equation (5.1) is still valid if E� is replaced by the sum of E�1 and E�2

for plates 1 and 2, which need to be calculated separately. This type of calculation may
be required sometimes in experimental SEA where a subsystem is inhomogeneous.

This type of averaging is based on the assumption of forces that are not correlated at
the different driving points. Another type of averaging is to calculate the ratio between
input power and energy for each driving point first and then average them over all the
driving points. This averaging procedure has, however, been criticized [3] as giving
inappropriate weight to areas between modes, where very little vibration energy exists.

For the decay rate method, the mean value of the damping loss factor is estimated by
the spatial averaging initial decay rates over a system such as

h= ḡ/27·3f , (5.2)
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Figure 7. Comparison of damping loss factors obtained by using the decay rate method (—W—) and the power
input method (—w—) in the undamped plate 1. Six measurement points and three driving points are used.

Figure 8. Comparison of damping loss factors obtained by using the decay rate method and the power input
method for the lightly damped plate 1. Same number and location of the measurement points and driving points
as for the undamped plate 1 are used. Key as Figure 7.

where ḡ= sm
j=1 sn

i=1 gij /nm and gij is the initial decay rate at the measurement point i when
the system is excited at point j.

For the undamped and lightly damped plate 1, Figures 7 and 8 show that the
damping loss factors determined from the two methods in general agree with each other
in the frequency bands of interest. For the highly damped plate 1, Figure 9 shows that
the damping loss factors using the two methods agree very well in the frequency bands
from 500 to 1250 Hz. In the high frequency bands of 1600, 2000 and 2500 Hz, a systematic
difference between the two methods can be seen. This problem is in accord with an
underlying assumption of equations (2.1) and (2.2): i.e., the decay rate and power input
methods are consistent only when damping is light or moderate [3]. The comparison of
the damping loss factors determined by the two methods for the system including two
coupled plates is shown in Figure 10. A good agreement is achieved between the two
methods in all the frequency bands of interest. These comparisons confirm the general
conclusion drawn by Jacobsen [3] about the consistency relationship between the decay
rate method and the power input method.

6. SPATIAL VARIATION ANALYSIS OF INITIAL DECAY RATES

The initial decay rates can show great variation over a surface of a structure. An example
of this can be seen in Figure 11 where a measurement on the highly damped plate 1 was
carried out in a frequency band which includes several modes. The decay curves ‘a’ and
‘b’ were measured at different positions for the same point of excitation. The decay curves
‘b’ and ‘c’ were measured at the same position for different excitation points. It is shown
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Figure 9. Comparison of loss factors when using the decay rate method and the power input method for the
highly damped plate 1. The same number and location of the measurement points and driving points as for the
undamped plate 1 are used. Key as Figure 7.

Figure 10. Comparison of loss factors when using the decay rate method and the power input method for
a system including two coupled plates 1 and 2. Six measurement points and three driving points for each plate
are used. Key as Figure 7.

that the initial decay slope is dependent both on the location of the measurement and
driving points, which can also be seen for the responses in the power input method [3].
Thus, it is necessary to investigate the spatial variation of the quantity in order to obtain
more reliable estimations.

To evaluate the quality in the estimation of initial decay rate, the normalized variance
is used as a control measure, which can be calculated by [2, 20]

nv= s2
d /d�2, (6.1)

where d� and sd are the estimated sample mean and standard deviation. For comparison
between different frequency bands and different structural configurations, this relative
variance gives more correct information than the variance itself since the mean value may
vary with frequency, damping and coupling.

6.1.         

The stability of the normalized variance of the initial decay rates in relation to the
number of measurement points is examined under the condition of using three driving
points on the undamped plate 1. The data of initial decay rates for 12 randomly selected
measurement points are collected. The decay measurements were carried out in seven third
octave bands from 500 to 2000 Hz, where the theoretically estimated number of modes per
band are from about two to eight as given in Figure 12. For a band that includes only
one mode, equation (2.3) shows that the decay slope is independent of the excitation and
the measurement locations if these locations are not positioned on the node lines of the
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Figure 11. Comparison of energy decay curves in the third octave band of 500 Hz in the highly damped plate
1. Curves ‘a’ and ‘b’ are for the different measurement points when using the same driving point. Curves ‘b’ and
‘c’ are for the same measurement point when using the different driving points.

Figure 12. Normalized variances of initial decay rate calculated versus number of the measurement points
under the condition of three drive points in the undamped plate 1. N: number of modes per band. The data
is from the first run of the random sampling procedure. Frequency (Hz), N: —W—, 500, 1·87; —w—, 630, 2·38;
+, 800, 2·98; —×—, 1000, 3·73; —t—, 1250, 4·73; —e—, 1600, 6·03; —Q—, 2000, 7·50.

mode. The situation is of no interest when the spatial variance of initial decay rate is
considered.

A random spatial sampling procedure, with a sample size that increases from 1 to 12,
is carried out for the population including 12 measurement points. For each measurement
point, there are three values corresponding to three driving points. The variance has
been calculated from these three driving points and the measurement points (1–12).
In order to avoid occasional chance, this random sampling procedure is run twice and
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Figure 13. Normalized variances of initial decay rate calculated versus number of the measurement points
under the condition of three drive points in the undamped plate 1. The data is from the second run of the random
sampling procedure. Frequency key as Figure 12.

Figure 14. Normalized variances of initial decay rate for each drive point and overall drive points in the
undamped plate 1. Six measurement points are used. —w—, Drive point 1; —r—, drive point 2; —q—, drive
point 3; —W—, all drive points.

the corresponding normalized variances are calculated and plotted versus the number of
the measurement points in Figures 12 and 13. It is shown that under the condition of
three driving points the normalized variances approach a stable condition more rapidly
and have lower values in the high frequency range than in the low frequency range. The
curves in the frequency bands of 500 and 2000 Hz show typical examples of this tendency.
The damping effect on the normalized variances in the undamped plate can be ignored
since the damping loss factors are almost constant over the frequency range of interest
as shown in Figure 7. Since the bandwidth and number of modes in a third octave band
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Figure 15. Comparison of normalized variances of initial decay rate for plate 1 in undamped, lightly damped,
highly damped, and coupling conditions. Six measurement points are used. —w—, Undamped; —r—, lightly
damped; —Q—, highly damped; —W—, coupled.

Figure 16. Normalized variances of initial decay rate for plate 2 in lightly damped (—r—) and coupled
(—W—) conditions.

in general increase with frequency, this implies that the increased number of modes in
a band can reduce the normalized variance. In addition, for smaller bandwidths where
there are few but at least two modes in a band, one needs more randomly selected
measurement points to obtain a stable variance estimation. One may also see the effect
of the number of modes for the lightly damped plates in Figures 14–16.

6.2.     

Figure 14 gives the normalized variances for each of the three driving points in the
undamped plate 1. The data from six randomly selected measurement points out of 12



     679

measurement points are used. Variations between the normalized variances for different
driving points are observed and the normalized variances over all driving points can be
larger than that of the individuals, such as those in the bands of 1600 and 2000 Hz. This
is because different modes are excited. This finding can also be seen in the cases of lightly
damped and highly damped plates.

6.3.   

The normalized variances of plate 1 in undamped, lightly damped and highly damped
conditions are compared in Figure 15. It is shown that the lightly damped plate gives lower
normalized variances in most of the frequency range compared to the undamped plate.
For the highly damped plate, compared with the undamped and lightly damped cases, the
added damping does not reduce the normalized variance in the lower part of frequency
range from 500 to 1250 Hz. Furthermore, the added damping increases the normalized
variances in the higher part of frequency range from 1600 to 2500 Hz. The explanation
may be that (i) such high damping leads to very sharp decay slopes, and as a result
calculation of the initial decay rate becomes sensitive to small changes in the positioning
of a straight line when determining the initial decay slope, and (ii) for the available decay
interval (e.g., 20 dB) the corresponding time interval may not be much larger than the
energy mean free path time. This may increase the variation of the initial decay rate.

In the case of two coupled plates, the normalized variances for each plate are given in
Figures 15 and 16. It can be seen that the normalized variances are lower in whole the
frequency range of interest for both plates. This is mainly because the damping loss factor
for each plate is increased to a ‘moderate’ level due to the coupling damping. It may be
concluded that the damping has a positive effect to reduce the space variation of initial
decay rate when the damping loss factor is not too high. Comparison of Figures 7–10
and 14–16 shows that this upper limit of damping loss factor is 0·03 or 0·04.

6.4.    

Figures 17 and 18 give the mean values and standard deviations of the initial decay
rates for the lightly damped and highly damped plate 1. It is found that the intervals of
standard deviation are approximately proportional to the mean values. This is logical from
a statistical point of view since the standard deviation is based on deviations from the
mean. Larger deviations would be expected from a large mean than from a small one.
In practice, this proportion corresponds to that the initial decay rate is more sensitive to
small variations in the selection of initial decay slope when the frequency or damping
increases, because the initial decay rate is proportional to the damping loss factor and
frequency in terms of equation (2.1).

Figure 19 presents the same results but on a log scale. It is shown that the intervals of
standard deviation of the initial decay rate on a log scale are comparable to the related
normalized variances as given in Figure 15. This is because both the quantities deal with
relative values.

7. COMPARISON OF NORMALIZED VARIANCES BETWEEN THE DECAY RATE AND
THE POWER INPUT METHODS

For a uniform plate, the formula of variance of damping loss factor determined from
the power input method in equation (5.1) can be expressed as

s2
h =(1/vV�2M)2s2

P +(P�/v(V�2)2M)2s2
V2, (7.1)
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Figure 17. Mean values (w) and standard deviation intervals (+) for plate 1 in lightly damped condition.
The data are plotted on a linear scale.

Figure 18. Mean values and standard deviation intervals of initial decay rate for plate 1 in highly damped
condition. The data are plotted on a linear scale. Key as Figure 17.

where V2 and P are the variables of time averaged squared velocity and input power,
V�2 and P� are the spatial averages of time averaged squared velocity and input power, and
s2

V2 and s2
P are the sample variances of time averaged squared velocity and input power.

The details of derivation of equation (7.1) by using the theory of propagation of error
[21, 22] is given in Appendix 1. This theory has been applied to a previous work on
statistical and sensitivity aspects of the power input method [23].

Equation (7.1) shows that the variances of loss factor refers to two sources of variances:
that is, the variation of input power due to the location of driving points and the variation
of squared velocity due to both location of driving points and measurement points.

The comparison of the normalized variances of damping loss factor determined from
the decay rate and the power input methods is given in Figures 20 and 21 for the
undamped and highly damped plate 1. This comparison is reasonable since the mean values
of damping loss factor determined from these two methods agree reasonably well with each
other as shown previously, even though the compared quantities are from two different
populations. For the highly damped plate, this comparison is performed only in the
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Figure 19. Mean values and standard deviation intervals of initial decay rate for plate 1 for lightly damped
and highly damped conditions. The data are plotted on a log scale. w, Mean, lightly damped; +, 1 std, lightly
damped; q, mean, highly damped; —×—, 1 std, highly damped.

third octave bands from 500 to 1250 Hz since systematic differences of the mean values
of damping loss factor appear between the two methods in the higher frequency range as
shown in Figure 9. It is shown that for the plates investigated the normalized variances
of damping loss factors determined by using the decay rate method are much lower than
those of damping loss factor determined by using the power input method in all the third
octave bands of interest for both undamped and damped situations. This indicates that
with the same location of driving and measurement points, the decay rate method will
produce more reliable estimates of damping loss factor than the power input method.
Figures 20 and 21 show also that the source of variance due to velocity has larger
contributions to the total normalized variance than that due to input power.

Equation (7.1) is an approximation. If the error due to truncation of the Taylor series
is taken into account, the actual variances of damping loss factors may be higher than
those given by equation (7.1). This is, however, still consistent with the previous
conclusion.

8. FINAL REMARKS

In this study, the initial decay rate of energy decay curves has been studied
experimentally on single, coupled, undamped, and damped rectangular plates. The purpose
is to obtain a better understanding of the process of the initial decay, to investigate the
spatial variation of the initial decay rate in order to obtain more reliable estimation of the
loss factor determined from the decay rate method, and to compare the spatial averages
and spatial variances between the decay rate method and the power input method.

The main conclusions can be drawn as follows.
(i) The concept of the energy free path time is useful in characterizing the initial decay

stage. Principally, the time interval for the initial decay slope should be at least twice
(even much larger than) that of the energy mean free path time. It is concluded that the
initial decay slopes can sometimes be selected within a very short decay interval (e.g., less
than 10 dB) provided that the principal above is fulfilled. Accordingly, the dimension and
damping of a structure as well as frequency are the factors that influence the determination
of an initial decay slope.
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Figure 20. Comparison of normalized variances of damping loss factor determined when using the decay rate
method and the power input method for plate 1 for the undamped condition. The variance of damping loss factor
determined by using the power input method is calculated by equation (7.1). —w—, Power input method, total;
×, power input method, due to input power; +, power input method, due to velocity; —W—, decay rate method.

Figure 21. Comparison of normalized variances of damping loss factor determined when using the decay rate
method and the power input method for plate 1 in a highly damped condition. The variance of damping loss
factor determined by using the power input method is calculated by equation (7.1). Key as Figure 20.

(ii) It is observed that the starting point of decay of energy is delayed a time period from
the instance when the input power is suddenly switched off. The time delay can also be
quantified by the energy mean free path time. It can be concluded that only the energy
decay in the reverberant field should be considered when the measurement points are not
close to the driving points. It should be noted that the size of the direct field is dependent
on the physical size of a structure.

(iii) It is confirmed that the loss factors obtained when using the decay rate and the
power input methods agree with each other for undamped, lightly damped, highly damped
plates (up to a specific frequency) and coupled plates.

(iv) The analysis of spatial variation of initial decay rate shows that for a frequency
band with few, but no less than two, modes more measurement points need to be used
to obtain a stable estimation of variance.
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(v) The increase of number of modes in a frequency band and the increased damping
reduces the spatial variation of the estimates of initial decay rate. However, too high
damping may increase the spatial variation. This limit for damping loss factor is about
0·03 or 0·04 in the study.

(vi) For single plates, the normalized variances of damping loss factor determined from
the decay rate method are much less than those determined from the power input method.
This suggests that for a certain number of driving and measurement points, the decay
method should be the first choice when determining a reliable estimate of damping loss
factors compared to the power input method. In addition, in the power input method, the
spatial variation of velocity contributes more to the total variance of estimates of damping
loss factor than that of input power.
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APPENDIX A

The variance of loss factor determined by using equation (5.1) can be derived from the
theory of propagation of error [21, 22].

For a non-linear function Y= f(X1, X2, . . . , Xn ) with independent random variables
X1, X2, . . . , Xn , the dependent variable Y can be linearized approximately by applying a
Taylor series expansion about the point m=(m1, m2, . . . , mn ) where mi =E(Xi ). One has

f(X1, X2, . . . , Xn )3 f(m1, m2, . . . , mn )+ s
n

i=1 0 1f
1XbXi = mi

1(Xi − mi ). (A1)

Recalling that if U= a+ bW, where a and b are constant, then s2
U = b2s2

W , one has

s2
Y 30 1f

1X1bX1 = m1
1

2

s2
X1

+0 1f
1X2bX2 = m2

1
2

s2
X2

+ · · ·+0 1f
1XnbXn = mn

1
2

s2
Xn

. (A2)

In equation (5.1), the time averaged input power P and the time averaged squared
velocity V2 are two independent variables when the random noise excitation is used. Thus,
the variance of loss factor can be expressed as

s2
h 3 (1/vV�2M)2s2

P +(P�/v(V�2)2M)2s2
V2, (A.3)

where P� =1/m sm
j=1 Pj , Pj is the time averaged input power at the drive point j

( j=1, . . . , m) in the plate, V�2 = sm
j=1 sn

i=1 V2
ij /mn, V2

ij is the time averaged square
velocity in the measurement point i (i=1, . . . , n) when the plate is excited in the
drive point j, M is the mass of the plate, s2 replaces s2 since the sample variance is
used to estimate the unknown population variance, s2

P = sm
j=1 (Pj −P�)2/(m−1) and

s2
V2 = sm

j=1 sn
i=1 (V2

ij −V�2)2/(mn−1).


